resnet-50
 Model ID:  @cf/microsoft/resnet-50 
50 layers deep image classification CNN trained on more than 1M images from ImageNet
Properties
Task Type: Image Classification
Code Examples
Workers - Typescript
  export interface Env {  AI: Ai;}
export default {  async fetch(request, env): Promise<Response> {    const res = await fetch("https://cataas.com/cat");    const blob = await res.arrayBuffer();
    const inputs = {      image: [...new Uint8Array(blob)],    };
    const response = await env.AI.run(      "@cf/microsoft/resnet-50",      inputs    );
    return new Response(JSON.stringify(response));  },} satisfies ExportedHandler<Env>;curl
  curl https://api.cloudflare.com/client/v4/accounts/$CLOUDFLARE_ACCOUNT_ID/ai/run/@cf/microsoft/resnet-50  \    -X POST  \    -H "Authorization: Bearer $CLOUDFLARE_API_TOKEN"  \    --data-binary "@orange-llama.png"Response
[{ "label":"PERSIAN CAT" ,"score":0.4071170687675476 },{ "label":"PEKINESE", "score":0.23444877564907074 },{ "label":"FEATHER BOA", "score":0.22562485933303833 },{ "label":"POMERANIAN", "score":0.033316344022750854 },{ "label":"JAPANESE SPANIEL", "score":0.024184171110391617 }]API Schema
The following schema is based on JSON Schema
Input JSON Schema
  {  "oneOf": [    {      "type": "string",      "format": "binary"    },    {      "type": "object",      "properties": {        "image": {          "type": "array",          "items": {            "type": "number"          }        }      },      "required": [        "image"      ]    }  ]}Output JSON Schema
  {  "type": "array",  "contentType": "application/json",  "items": {    "type": "object",    "properties": {      "score": {        "type": "number"      },      "label": {        "type": "string"      }    }  }}